A Review of the Therapeutic Effects of Garlic in Lowering Blood Pressure: A Comprehensive Analysis of Recent Mechanisms and Existing Clinical Data
Main Article Content
Hypertension is a medical condition characterized by an elevation in systolic blood pressure equal to or greater than 140 mmHg and/or diastolic blood pressure equal to or greater than 90 mmHg. Hypertension elevates the likelihood of developing cerebrovascular disease and mortality. The administration of conventional antihypertensive drugs frequently leads to the occurrence of adverse effects. Moreover, a significant proportion of the population in developing nations, approximately 70%, currently favors the utilization of herbal remedies as opposed to conventional pharmaceuticals. Garlic is a herbal plant known for its antihypertensive properties. This review specifically examines the current mechanisms by which garlic acts as an antihypertensive, and presents the clinical evidence available to date regarding garlic's effectiveness in lowering blood pressure. The present mechanism by which garlic acts as an antihypertensive agent involves its anti-inflammatory, vasorelaxant, antioxidant, anti-apoptotic effects, enhancement of microbiota activities, and improvement of heart function. The antihypertensive effect of garlic is derived from its organosulfur content. Based on multiple clinical trials, the majority of studies have found that administering interventions in the form of capsules containing garlic or aged black garlic extract leads to a decrease in blood pressure. Garlic has anti-hypertensive effects, especially in the form of aged black garlic extract.
2. Kemenkes BKPK. Survei Kesehatan Indonesia (SKI) 2023 Dalam Angka. 2024.
3. Kjeldsen SE. Hypertension and cardiovascular risk: General aspects. Pharmacol Res. 2018;129:95–9. doi: 10.1016/j.phrs.2017.11.003
4. Aune D, Huang W, Nie J, Wang Y. Hypertension and the Risk of All-Cause and Cause-Specific Mortality: An Outcome-Wide Association Study of 67 Causes of Death in the National Health Interview Survey. Biomed Res Int. 2021;2021:9376134. doi:10.1155/2021/9376134
5. Persatuan Dokter Hipertensi Indonesia. Konsensus Penatalaksanaan HipertensI 2021: Update Konsensus PERHI 2019.
6. Tengku Mohamad TAS, Islahudin F, Jasamai M, Jamal JA. Preference, perception and predictors of herbal medicine use among malay women in Malaysia. Patient Prefer Adherence. 2019;13:1829–37. doi:10.2147/PPA.S227780
7. Pane MH, Rahman AO, Ayudia EI. Gambaran Penggunaan Obat Herbal pada Masyarakat Indonesia dan Interaksinya terhadap Obat Konvensional. J Med Stud. 2021;1(1):40–62.
8. Banerjee SK, Maulik SK. Effect of garlic on cardiovascular disorders: a review. Nutr J. 2002;1(4). doi:10.1186/1475-2891-1-4
9. Liu W, Xu S, Liang S, Duan C, Xu Z, Zhao L, et al. Hypertensive vascular and cardiac remodeling protection by allicin in spontaneous hypertension rats via CaMK Ⅱ/NF-κB pathway. Biomed Pharmacother. 2022;155:113802. doi: 10.1016/j.biopha.2022.113802
10. Cui T, Liu W, Chen S, Yu C, Li Y, Zhang JY. Antihypertensive effects of allicin on spontaneously hypertensive rats via vasorelaxation and hydrogen sulfide mechanisms. Biomed Pharmacother. 2020;128(110240). doi:10.1016/j.biopha.2020.110240
11. Gao X, Xue Z, Ma Q, Guo Q, Xing L, Santhanam RK, et al. Antioxidant and antihypertensive effects of garlic protein and its hydrolysates and the related mechanism. J Food Biochem. 2020;44(2):e13126. doi:10.1111/jfbc.13126
12. Izzati W, Luthfiani F. Pengaruh Pemberian Air Rebusan Bawang Putih Terhadap Tekanan Darah pada Pasien Hipertensi di Wilayah Kerja Puskesmas Tigo Baleh Kota Bukittinggi. Afiyah. 2017;4(2):48–54.
13. Setianti SN, Fitria CN. Manfaat Air Seduhan Bawang Putih Terhadap Penurunan Hipertensi. Profesi Media Publikasi Penelitian. 2018;16(1):30–36.
14. Rahayuningrum DC, Herlina A. Pengaruh Pemberian Air Perasan Bawang Putih (Allium sativum) Terhadap Tekanan Darah pada Penderita Hipertensi. Jurnal Kesehatan Saintika Meditory. 2020;2(2):18–26.
15. Serrano JCE, Castro-Boqué E, García-Carrasco A, Morán-Valero MI, González-Hedström D, Bermúdez-López M, et al. Antihypertensive Effects of an Optimized Aged Garlic Extract in Subjects with Grade I Hypertension and Antihypertensive Drug Therapy: A Randomized, Triple-Blind Controlled Trial. Nutrients. 2023;15(17):3691. doi:10.3390/nu15173691
16. Sunanta P, Kontogiorgos V, Pankasemsuk T, Jantanasakulwong K, Rachtanapun P, Seesuriyachan P, et al. The nutritional value, bioactive availability and functional properties of garlic and its related products during processing. Front Nutr. 2023;10:1142784. doi:10.3389/fnut.2023.1142784
17. Kementerian Kesehatan Republik Indonesia. Data Komposisi Pangan Indonesia [Internet]. Available from: https://panganku.org/id-ID/view
18. Shang A, Cao SY, Xu XY, Gan RY, Tang GY, Corke H, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019;8(7):246. doi:10.3390/foods8070246
19. El-Saber Batiha G, Magdy Beshbishy A, G Wasef L, Elewa Y, Al-Sagan A, Abd El-Hack M, et al. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients. 2020;12(3):872. doi:10.3390/nu12030872
20. Verma T, Aggarwal A, Dey P, Chauhan AK, Rashid S, Chen KT, et al. Medicinal and therapeutic properties of garlic, garlic essential oil, and garlic-based snack food: An updated review. Front Nutr. 2023;10:1120377. doi:10.3389/fnut.2023.1120377
21. Locatelli DA, Nazareno MA, Fusari CM, Camargo AB. Cooked garlic and antioxidant activity: Correlation with organosulfur compound composition. Food Chem. 2017;220:219–224. doi:10.1016/j.foodchem.2016.10.001
22. Omar SH, Al-Wabel NA. Organosulfur compounds and possible mechanism of garlic in cancer. Saudi Pharm J. 2010;18(1):51–58. doi:10.1016/j.jsps.2009.12.007
23. Jeremic JN, Jakovljevic VL, Zivkovic VI, Srejovic IM, Bradic J V., Milosavljevic IM, et al. Garlic derived diallyl trisulfide in experimental metabolic syndrome: Metabolic effects and cardioprotective role. Int J Mol Sci. 2020;21(23):9100. doi:10.3390/ijms21239100
24. Cook KL, Chappell MC. Gut dysbiosis and hypertension: Is it cause or effect? J Hypertens. 2021;39(9):1768–1770. doi:10.1097/HJH.0000000000002908
25. Ried K, Travica N, Sali A. The Effect of Kyolic Aged Garlic Extract on Gut Microbiota, Inflammation, and Cardiovascular Markers in Hypertensives: The GarGIC Trial. Front Nutr. 2018;5:122. doi:10.3389/fnut.2018.00122
26. Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol. 2023;13:1098725. doi:10.3389/fimmu.2022.1098725
27. Li X, Zhang Z, Luo M, Cheng Z, Wang R, Liu Q, et al. NLRP3 inflammasome contributes to endothelial dysfunction in angiotensin II-induced hypertension in mice. Microvasc Res. 2022;143:104384. doi:10.1016/j.mvr.2022.104384
28. Krishnan SM, Ling YH, Huuskes BM, Ferens DM, Saini N, Chan CT, et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res. 2019;115(4):776–87. doi:10.1093/cvr/cvy252
29. Socha MW, Malinowski B, Puk O, Dubiel M. The NLRP3 Inflammasome Role in the Pathogenesis of Pregnancy Induced Hypertension and Preeclampsia. Cells. 2020;9(7):1642. doi:10.3390/cells9071642
30. De Miguel C, Pelegrín P, Baroja-Mazo A, Cuevas S. Emerging role of the inflammasome and pyroptosis in hypertension. Int J Mol Sci. 2021;22(3):1064. doi:10.3390/ijms22031064
31. Jin L, Piao ZH, Liu CP, Sun S, Liu B, Kim GR, et al. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats. J Cell Mol Med. 2018;22(3):1517–26. doi:10.1111/jcmm.13419
32. Khurana V, Goswami B. Angiotensin converting enzyme (ACE). Clin Chim Acta. 2022;524:113–22. doi:10.1016/j.cca.2021.10.029
33. Su Y. Regulation of endothelial nitric oxide synthase activity by protein-protein interaction. Curr Pharm Des. 2014;20(22):3514–20. doi:10.2174/13816128113196660752
34. Tran N, Garcia T, Aniqa M, Ally A, Nauli S. Endothelial Nitric Oxide Synthase (eNOS) and the Cardiovascular System: in Physiology and in Disease States. Am J Biomed Sci Res. 2022;15(2):153–77.
35. Feelisch M, Akaike T, Griffiths K, Ida T, Prysyazhna O, Goodwin JJ, et al. Long-lasting blood pressure lowering effects of nitrite are NO-independent and mediated by hydrogen peroxide, persulfides, and oxidation of protein kinase G1α redox signalling. Cardiovasc Res. 2020;116(1):51–62.
36. Hughan KS, Levine A, Helbling N, Anthony S, DeLany JP, Stefanovic-Racic M, et al. Effects of Oral Sodium Nitrite on Blood Pressure, Insulin Sensitivity, and Intima-Media Arterial Thickening in Adults With Hypertension and Metabolic Syndrome. Hypertension. 2020;76(3):866–74. doi:10.1161/HYPERTENSIONAHA.120.14930
37. Kang JS, Kim SO, Kim GY, Hwang HJ, Kim BW, Chang YC, et al. An exploration of the antioxidant effects of garlic saponins in mouse-derived C2C12 myoblasts. Int J Mol Med. 2016;37(1):149–56. doi:10.3892/ijmm.2015.2398
38. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64(4):897–903. doi:10.1161/HYPERTENSIONAHA.114.03469
39. Liu J, Zhang D, Guo Y, Cai H, Liu K, He Y, et al. The Effect of Lactobacillus Consumption on Human Blood Pressure: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Complement Ther Med. 2020;54:102547. doi:10.1016/j.ctim.2020.102547
40. Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM, et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. 2017;49(2):96–104. doi:10.1152/physiolgenomics.00081.2016
41. Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, et al. Hypertension-Linked Pathophysiological Alterations in the Gut. Circ Res. 2017;120(2):312–23. doi:10.1161/CIRCRESAHA.116.309006
42. Lee H, Kim KC, Hong YM. Changes of Bax, Bcl-2, CCR-2, MCP-1, and TGF-β1 genes in the left ventricle of spontaneously hypertensive rat after losartan treatment. Korean J Pediatr. 2019;62(3):95–101. doi:10.3345/kjp.2018.06856
43. Liu W, Ru L, Su C, Qi S, Qi X. Serum levels of inflammatory Cytokines and expression of BCL2 and BAX mRNA in peripheral blood mononuclear cells and in patients with chronic heart failure. Med Sci Monit. 2019;25:2633–9. doi:10.12659/MSM.912457
44. Wang Q, Cui Y, Lin N, Pang S. Correlation of cardiomyocyte apoptosis with duration of hypertension, severity of hypertension and caspase‑3 expression in hypertensive rats. Exp Ther Med. 2019;17(4):2741–5. doi:10.3892/etm.2019.7249
45. Qidwai W, Ashfaq T. Role of garlic usage in cardiovascular disease prevention: an evidence-based approach. Evid Based Complement Alternat Med. 2013;2013:125649.
46. Pérez-Torres I, Torres-Narváez JC, Pedraza-Chaverri J, Rubio-Ruiz ME, Díaz-Díaz E, Del Valle-Mondragón L, et al. Effect of the aged garlic extract on cardiovascular function in metabolic syndrome rats. Molecules. 2016;21(11):1425. doi:10.3390/molecules21111425
47. Valls RM, Companys J, Calderón-Pérez L, Salamanca P, Pla-Pagà L, Sandoval-Ramírez BA, et al. Effects of an Optimized Aged Garlic Extract on Cardiovascular Disease Risk Factors in Moderate Hypercholesterolemic Subjects: A Randomized, Crossover, Double-Blind, Sustained and Controlled Study. Nutrients. 2022;14(3):405. doi:10.3390/nu14030405
48. Zadhoush R, Alavi-Naeini A, Feizi A, Naghshineh E, Ghazvini MR. The effect of garlic (Allium sativum) supplementation on the lipid parameters and blood pressure levels in women with polycystic ovary syndrome: A randomized controlled trial. Phytother Res. 2021;35(11):6335–42. doi:10.1002/ptr.7282
49. Wlosinska M, Nilsson AC, Hlebowicz J, Hauggaard A, Kjellin M, Fakhro M, et al. The effect of aged garlic extract on the atherosclerotic process-A randomized double-blind placebo-controlled trial. BMC Complement Med Ther. 2020;20(1):132. doi:10.1186/s12906-020-02932-5
50. Choudhary PR, Jani RD, Sharma MS. Effect of Raw Crushed Garlic (Allium sativum L.) on Components of Metabolic Syndrome. J Diet Suppl. 2018;15(4):499–506. doi:10.1080/19390211.2017.1358233
51. Ashraf R, Khan RA, Ashraf I, Qureshi AA. Effects of Allium sativum (Garlic) on systolic and diastolic blood pressure in patients with essential hypertension. Pak J Pharm Sci. 2013;26(5):859–63.
52. Ried K, Frank OR, Stocks NP. Aged garlic extract reduces blood pressure in hypertensives: A dose-response trial. Eur J Clin Nutr. 2013;67(1):64–70. doi:10.1038/ejcn.2012.178
53. Ried K, Frank OR, Stocks NP. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: A randomised controlled trial. Maturitas. 2010;67(2):144–50. doi:10.1016/j.maturitas.2010.06.001
54. Setiadi I. Bawang Putih Sebagai “Obat Tekanan Darah Tinggi [Internet]. Available from: https://yankes.kemkes.go.id/view_artikel/708/bawang-putih-sebagai-obat-tekanan-darah-tinggi
55. Amiri M, Ramezani Tehrani F, Behboudi-Gandevani S, Bidhendi-Yarandi R, Carmina E. Risk of hypertension in women with polycystic ovary syndrome: A systematic review, meta-analysis and meta-regression. Reprod Biol Endocrinol. 2020;18(1):23. doi:10.1186/s12958-020-00576-1
56. Drenth-van Maanen AC, Wilting I, Jansen PAF. Prescribing medicines to older people—How to consider the impact of ageing on human organ and body functions. Br J Clin Pharmacol. 2020;86(10):1921–30. doi:10.1111/bcp.14094
57. Afzaal M, Saeed F, Rasheed R, Hussain M, Aamir M, Hussain S, et al. Nutritional, biological, and therapeutic properties of black garlic: a critical review. International Journal of Food Properties. 2021;24(1):1387–402. doi:10.1080/10942912.2021.1967386
58. Wang HP, Yang J, Qin LQ, Yang XJ. Effect of Garlic on Blood Pressure: A Meta-Analysis. J Clin Hypertens. 2015;17(3):223–31. doi:10.1111/jch.12473